Cell Cycle Control and Bifurcation for a Free Boundary Problem Modeling Tissue Growth

نویسندگان

  • Wenrui Hao
  • Bei Hu
  • Andrew J. Sommese
چکیده

We consider a free boundary problem for a system of partial differential equations, which arise in a model of cell cycle. For the quasi steady state system, it depends on a positive parameter β, which describes the signals from the microenvironment. Upon discretizing this model, we obtain a family of polynomial systems parameterized by β. We numerically find that there exists a radially-symmetric stationary solution with tumor free boundary r = R for any given positive number R by using numerical algebraic geometry method. By homotopy tracking with respect to the parameter β, there exist branches of symmetry-breaking stationary solutions. Moreover, we proposed a numerical algorithm based on Crandall-Rabinowitz theorem to numerically verify the bifurcation points. By continuously changing μ using a homotopy, we are able to compute nonradial symmetric solutions. We additionally discuss control function β.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation in a variational problem on a surface with a constraint

We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.

متن کامل

Free and constrained equilibrium states in a variational problem on a surface

We study the equilibrium states for an energy functional with a parametric force field on a region of a surface. Consideration of free equilibrium states is based on Lyusternik - Schnirelman's and Skrypnik's variational methods. Consideration of equilibrium states under a constraint of geometrical character is based on an analog of Skrypnik's method, described in [P. Vyridis, {it Bifurcation in...

متن کامل

A two-phase free boundary problem for a semilinear elliptic equation

In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary‎. ‎We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...

متن کامل

Computing steady-state solutions for a free boundary problem modeling tumor growth by Stokes equation

We consider a free boundary problem modeling tumor growth where the model equations include a diffusion equation for the nutrient concentration and the Stokes equation for the proliferation of tumor cells. For any positive radius R, it is known that there exists a unique radially symmetric stationary solution. The proliferation rate μ and the cell-to-cell adhesiveness γ are two parameters for c...

متن کامل

Mathematical Modeling of Cancer Cells and Chemotherapy Protocol Dealing Optimization Using Fuzzy Differential Equations And Lypunov Stability Criterion

Mathematical models can simulate the growth and proliferation of cells in the interaction with healthy cells, the immune system and measure the toxicity of drug and its effects on healthy tissue pay. One of the main goals of modeling the structure and growth of cancer cells is to find a control model suitable for administration among patients. In this study, a new mathematical model is designed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2013